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Absorption and refraction of radiation by liquids 
11. Solvent effects on the absorption intensity 

L. A. DISSADO 
Research School of Chemistry, The Institute of Advanced Studies, 
Australian National University, Canberra, Box 4 P.O., A.C.T. 2600, Australia 
MS.  received 19th February 1970 

Abstract. Absorption intensities are given in terms of the vapour phase solute 
transition dipole moment, and the dielectric properties of the solvent. The 
Chako factor is derived from perturbation theory and shown to be due to off- 
resonance excitation exchange between the solute and the solvent. A complete 
first-order perturbation correction is made to the transition dipole moment 
and applied to the calculation of the intensification factor. The calculated 
and observed solvent intensifications are compared for strongly and weakly 
absorbing systems. 

1. Introduction 
Molecular properties such as polarizability, transition and permanent dipole 

moments are often obtained from measurements of the dielectric and spectroscopic 
properties in condensed phases rather than from the isolated molecules in the gas, 
Also the values of molecular properties obtained in one condensed state are often 
used in the determination of the properties in others. It is therefore important to have 
valid relationships between molecular properties and the measurable bulk quantities. 

The transition dipole moment is of central importance. It is obtained by equating 
the transition probability per unit time with the theoretical Einstein B coefficient. 
For isolated molecules the relation (1) holds, giving the square of the transition dipole 
moment (q)  in terms of the extinction coefficient E: 

w being the circular frequency of the transition and N Avogadro's number. Various 
modifications have been proposed in which the medium effects are taken into account. 
Mulliken and Rieke (1941) allowed for a changed velocity of light in a medium of 
refractive index a( w )  to obtain (2) : 

3hc E dw 
q2 = 8rr3Ne2 s a w *  (2) 

Chako (1934) considered the solute molecule at the centre of a small spherical cavity 
within a uniform dielectric. The polarization on the inside of the cavity then gives an 
electric field to be added to the medium electric field acting on the solute molecule, 
making up the effective local field (Lorentz cavity field) and changing the effective 
magnitude of the dipole to expression (3 ) .  If the effective field at the dipole does not 
include the local field, expression (4) is obtained. 

3hc 9n(w) dw 
E- ( 3 )  {a2(w)+2}2 w 
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3hc dw 
q 2 = - - - j  En( w )  --. w 

8n3Ne2 (4) 

These treatments are classical, and other expressions based on electrostatic 
corrections have been proposed, as for example that of Weigang (1965) but none is 
entirely satisfactory in interpreting the experimental observations. 

All these methods have been based directly or indirectly upon an electrostatic 
derivation of the effective electric field at the position of the molecule. This effective 
electric field is the sum of the incident electric field and the internal field due to 
polarization of the surrounding molecules. The  internal field can be obtained from a 
quantum electrodynamic treatment of the complete system of radiation field plus 
molecular array, the approximations required to produce the electrostatic results being 
explicitly demonstrated. 

In  an earlier paper (Dissado 1970 a) the operator ( 5 )  was derived for interactions 
between solute molecules and the medium radiation field, valid in the dipole approxi- 
mation, formally similar to that of Power and Zienau (1957). 

Hint = -qms(r )  . d ( r ) .  

The effective solute transition dipole moment qms(r)  is given by 

q m s ( r )  = qYr)/nm* (6) 

The  operator ( 5 )  gives the interaction between the effective electric field within 
the medium and a transition dipole moment equivalent to the complete set of possible 
transitions in its interaction with the field. The  transition dipole moment qS(r)  is the 
exact expectation value for the transition s of the molecule at r in the presence of all 
other molecules. It is to be obtained by an application of perturbation theory to the 
solvent-solute liquid system, the operator ( 5 )  then being used to derive its interaction 
with the radiation field, giving the absorption probability. 

2. Determination of the relationship of measured intensity of absorption to 
the transition dipole moment 

2.1. Transition dipole uncorrected for intermolecular interaction 
The  method of correcting the transition dipole of a state, which was introduced in 

Part I (Dissado 1970 b-to be referred to as I), will be applied here to the determina- 
tion of the medium correction to the solute transition dipole. The  solution is taken 
to be very dilute. Such corrections as previously discussed will alter the form of the 
expression used in estimating the transition dipole from the experimentally obtained 
absorption intensities. 

We must first relate the theoretically obtained absorption probability to the 
experimental extinction coefficient E .  This has been carried out using operator ( 5 )  
(Dissado 1970 a) for transition dipoles uncorrected for non-resonance interactions. 
The  resulting expression 

is identical to Chako’s alternative expression (4) if his refractive index is taken to be 
that of the medium. If we had used qY instead of q m Y  as the dipole moment operator, 
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Mulliken’s expression (2) is obtained. As in I, the use of the operator (5) involves a 
reduction of the zero-order coupling matrix. We must again allow for intermolecular 
interactions prior to this reduction. Expression (4) is thus obeyed for the corrected 
solute dipole qsyc. 

A similar model to that of I is advanced. The solute molecule (s) is assumed to be 
surrounded by solvent molecules (m)  only. Xo solute-solute interaction will be 
assumed to occur. All states of the system are taken to possess an average transition 
dipole of magnitude p lying along the polarization vector. The  solvent states are 
taken as fully corrected for solvent-solvent interactions, it being these solvent states 
which are removed from explicit consideration by use of the operator (5). 

2.2. Complete jirst-order correction to the transition dipoles 
Before considering a full first-order correction of the transition dipole, it is worth- 

while examining the result obtained when only intermolecular excitation exchange is 
considered. In  this approximation the solute dipole is given by 

I 

the analogue to the previously obtained expression for the pure liquid (I- 
equation (31)). Here n, is measured at the frequency of the transition. Substituting 
into (7)  we obtain Chako’s formula (3). 

As shown in I, the Lorentz factor arises from correction of the excited state wave 
function to include non-resonance interactions for a many-body system of which 
only one molecule is excited at a time. Since the exact wave function for the state y is 
required for the use of operator (5), further corrections to the wave function from 
liquid states which may interact with y at any order of perturbation theory can be 
expected. The  Lorentz correction is thus only the first of a sum of corrections, but it 
has generally been used to modify the dipole after quantum mechanical correction of 
the wave function (Weigang 1965). It is therefore necessary to recalculate the 
complete first-order correction isolating the Lorentz correction as one of a set of 
factors rather than as an overall multiplier. 

Both the ground and excited state wave functions must be corrected for coupling 
to states possessing one and two excitations. The  wave functions for these states are 
taken to be 

Here we have N ,  solute molecules and NP solvent molecules situated at sites r, s and 
p ,  1 respectively. The  solvent excited states are labelled a, and b, while those of the 
solute are labelled x and y .  + Y ( s ) a ( P )  is therefore a product wave function for all 
molecules in their ground state except the sth solute molecule in its yth state and the 
pth solvent molecule in its ath state. The  wave function (9) is taken to represent a 
Fourier component of the polarization wave produced by the excitation of the system 
by two photons of different frequencies. When the sum over wave vectors involved in 
the correction (10) is evaluated, only states for which K, is equal to K contribute. As 
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discussed in I, the only polarization state which may couple to the exciting wave is 
that for which K is equal to Q. Under these restrictions (9) is seen to represent the 
polarization wave. First-order (in intermolecular interactions) perturbation theory 
gives the corrected wave functions as 

for the solute state y ,  and 

a x ~1 K - n a x  

for the ground state G. 
E,, E,, and E ,  are energies for transition from the ground state to the excited state 

indicated. Since we are correcting for interaction between all states the unmodified 
Coulomb operator must be used to find the matrix elements H. For the static form 
of perturbation theory giving (10) and (11)) the denominator containing the sum of 
transition energies does not appear. This extra term is replaced when the transition 
dipole is obtained from a complete treatment including the field and molecules 
(Philpott 1966). In  the static form the polarizability becomes 

and the dielectric constant is given by 

This form will be used in place of the more general form of I (equation (24)) to 
identify the correction factors. 

I n  obtaining the transition dipole moment from (10) and (1 1) it must be remem- 
bered that the matrix elements also contain interactions of the solute and solvent 
permanent dipoles with the transition dipoles. These permanent dipoles are taken 
to be randomly oriented at the frequency of absorption, thus all matrix elements in 
which these appear as a single power average to zero. This does not apply to solvents 
of high dielectric constant whose permanent dipoles may be self oriented. The  results 
obtained for the model advanced will be used to determine its applicability to such 
solvents. The polarizability of the medium will again be taken to be isotropic as in I. 

The  only cross-term remaining after averaging is that for the first term of (11) 
with the fourth term of (10) for x as the ground state. This term is the correction 
due to excitation interchange and gives the Lorentz factor as has been shown in I. 
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When the permanent dipole appears as a square the average value over all angles 
is + of the matrix element (Margenau 1939). 

(!La" 4 y ) 2 P i 1  

p a ( E a 2 - E y 2 ) R p s 6  - 2  c 

p 0 ( y )  and po(p) are the permanent dipoles of the solute and solvent ground states 
respectively. A thorough discussion of this derivation has been given by Weigang 
(1965). Only differences arising from different identification of the matrix elements 
will be described. Since the transition dipoles are taken to be parallel no average 
over angles has been carried out for the second term of (14). The sum over molecules 
is again carried out by integration to give 

where V ,  is the average molecular volume of the medium, which for a dilute solution 
becomes that of the solvent molecules. a is the effective radius of the solute molecule, 
and is taken to be the mean molecular radius. 

Using (13) the contribution of this term is given as 

Similarly the third correction term becomes 

where the factor Ns-  1 appears because there are only N , -  1 ground-state solute 
molecules when one solute molecule is excited. In  both these terms the expression 
(E , )  refers to the mean transition energy for the solvent, weighted by the contribu- 
tion of each transition to the dielectric constant. 

The fourth term gives 

Here po(p)  is the uncorrected permanent dipole and should be obtained from I 
(equation (39)) giving 

4n n m 2 ( 0 ) - l ) ~  d+2 1 3 k T  
3 vnl n,"O) + 2 n,"O) + 2 (19) 

where d is the solvent dielectric constant. 
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The  transition dipole moment q““ obtained using these expressions must be 
normalized. I n  accordance with Weigang (1965) we take the normalizer to be 

[ j ( @ G C Y  d7- J {$yc(K))2 d7-11’2. 

The  matrix elements involved are evaluated in a similar way to (15). The  denominator 
is then expanded by the binomial theorem and only the first terms retained to give 

( 2 0 )  
(d+2)  1 d - 1  nm2(0)-  1 

d + 2  nm2(0)+2 {nm2(0) +2){nm2(w,)+2} 

Here the first correction term has been removed as a factor for comparison purposes. 
The  coefficients A, B and C are given by 

where as is the polarizability of the solute. 
The  expression obtained by Weigang given in (22)  to be compared with (20). 

2nm2(0) + 1 

2.3. A comparison with experimental values 
The constants A and A’, C and C’ are similar in form and magnitude and need 

not be further discussed. The  refractive index factors for A and A‘, though different 
in form, show only slight differences in the region of experimental values. A major 
difference occurs in the estimation of B and B’. Weigang finds B‘ to be zero in the 
limits taken for the binomial expansion of the normalizer, whereas B is shown to be 
of the same order of magnitude as A’ and C’ for dipolar solutes. 

The  presence of a contribution depending upon the permanent dipole of the 
solute molecule should be most significant for weak systems in which A’ and C’ are 
very small. A typical example of this type of system is the 36 000 cm-l transition of 
acetone, whose permanent dipole is 2.71 D. The intensification values calculated 
from (20) are shown in table 1. An almost negligible change from the Chako factors 
is found. Thus the observed deviations from the Chako values are not due to inter- 
actions with doubly excited states of the solute-solvent system (the source of correc- 
tions A’, B’ and C’). 
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Table 1. Ratio of observed oscillator strengths in solution to that of the 
vapour for the acetone 36 100 cm-* system 

Chako Expression Experimental? 
Solvent factor 20 

Carbon tetrachloride 
Chloroform 
Dichloromethane 
Benzene 
Iso-octane 
Cyclo-hexane 
Ethyl alcohol 
Methyl alcohol 
Water 
Diethyl ether 

1.35 
1.34 
1 e31 
1.56 
1.27 
1.34 
1.24 
1.21 
1.22 
1.24 

1.35 
1.33 
1-31 

1 -27 
1 e33 
1 e24 
1.20 
1.20 
1 *24 

1 - 5 5  

1 *32 
1-31 
1.20 
1 *06 
1.13 
1.02 
1.29 
1 *31 
2.12 
1 *29 

f Values given by Bayliss and Wills-Johnson 1968. 

A possible source of error is due to the consideration of the solvent as continuous, 
required to evaluate the dipole sums by integration. This approximation can be 
removed by including an extra term in A, the magnitude of which is the ratio of the 
difference between the real and integrated dipole sums to the integrated value. In  
this way allowance may be made for a local arrangement in which the solvent transi- 
tion dipoles are not assumed to be aligned along the electric field vector. 

This term gives a 10% alteration of the intensification factor +(nm2- 1) when its 
own magnitude is approximately 0.1, which, for the solvents discussed, requires a 
difference between real and integrated dipole sums of 200 cm-l/(unit dipole length)2. 
If the local order of the solvent is taken to be a cubic lattice of touching spherical 
molecules with permanent point dipoles situated at the molecular centre aligned 
parallel to the electric field vector, the correction gives an increase of approximately 
1% which is negligible. However, this model is unrealistic when considering the 
short-range order, since most molecules are far from spherical, and a correction of 10% 
would not be excessive especially in the case of benzene. 

In  the case of water and the alcohols some hydrogen bonding would also be 
expected to occur. These solvents also possess very high dielectric constants and 
may be thought of as having some local molecular alignment, which will result in a 
local field due to permanent dipoles. A dipolar solute or one capable of hydrogen 
bonding will have a fixed orientation due to the local arrangement. Under these 
conditions the solute molecule no longer possesses a random orientation and an 
average over transition dipole orientations need not give the 4 factor used. Since the 
dipole interactions between excited states should contain the factor 1 /d (Dissado 
1970 a), contributions from solute-solvent interaction will be drastically reduced. If 
the dielectric constant is very large the maximum intensification becomes 3/n (con- 
sidering = 4 ) .  In  the case of water this gives 2.2, close to the observed value for 
acetone. This agreement is only superficial however since much higher values are 
obtained for the nitroparaffins, but it serves to illustrate the change in magnitude 
brought about when the averaging factor 4 does not apply. 

The  experimental results obtained for nitroparaffins in the same solvents all 
show an increase compared with Chako’s factor, that (20) is unable to interpret. 
However, corrections of the transition dipole for solute-solute interactions via the 
medium introduces extra corrections which can to some extent reproduce these 
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results (Bayliss and Wills-Johnson 1968). Remembering that all solute molecules are 
to be taken as isolated from each other, this term can be found from second-order 
perturbation theory, in a similar way to the previous corrections, and is given by 

This term may be positive or negative according to the difference in energies E,-E,. 
If the state observed is a weak transition lying just below a strong transition, the term 
(23) is positive and will increase the intensification factor. Thus increases of the 
intensification factor as compared with the Chako factor can be accounted for. It 
should be noted here that this term contains a factor 

and not the generally used Chako factor; it may be included in (20) to contribute 
extra terms to A. 

For the case of a strong transition the factors A and C can be large, and the term 
(23) will generally be small unless the neighbouring transition is also strong. 

As an example of strong transition we take the 39 000 cm-l state of anthracene. 
Here there are no reliable vapour values for the oscillator strength, hence equations (20) 
and (22) have been solved iteratively from the solution values. Of the results given in 
table 2, the third value is generally taken to be high and can be neglected. Successive 

Table 2. Oscillator strengths for anthracene 39 100 c m - l  level 

Observed Expression 20 Expression 22 
value off 1 2 3 1 2 

( U )  1.56 1.25 1.25 1 ~ 2 4  1.22,  1.23 
(b)  1.70 1.25 1.26 1.25 1.21 1.23 
(c) 2.28 1 a79 1-80  1.78 1.72 1.74 

7 1 and 2 stand for first and second iteration, 3 for inclusion of correction (23). Experiment 
values (a) ,  (b) and (c) are given by Jones and Keir 1956, Morris 1959, and Klevens and Platt 
1949. 

iteration brings the other two results to agreement. Inclusion of the solute-solute 
interactions (23) decreases the intensification factor here, since the closest interacting 
transition lies below the observed state. This transition is weak and has little contri- 
bution. We have a check on the magnitude of the oscillator strength in this case, 
from a comparison with the crystal spectrum. In the crystal this state is split into two 

Table 3. Davydov splitting of 39000 c m - l  anthracene system, for 
varying oscillator strengths. Observed value N 15 000 c m - l  

Splitting Oscillator 
(cm - I) strength 

28 200 2.3 
20 900 197 
17  200 1.4 
15 300 1.25 
12  300 1 *o 
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widely separated levels, the magnitude of the separation being dependent upon the 
oscillator strength of the free molecule. Using a value of - 2661 for the inequivalent 
dipole sums (obtained by computation), the magnitude of the splitting is given in 
table 3 for various oscillator strengths. Because the state is intense, other crystal 
parameters will have only a minor effect on the calculations. The  estimated oscillator 
strength of 1.25 using (20) is seen to agree very well with the observed splitting which 
is in the region of 15 000 cm-l. 

3. Conclusions 
It has been shown that the correction to transition dipoles following from an 

application of the Lorentz-cavity field is only the first of a series of corrections, and 
cannot be used as an overall factor. It has thus to be used with care when estimating 
medium intensification. Since this factor arises from non-resonance intermolecular 
interactions leading to a correction of the wave function, its use is limited to cases in 
which perturbation theory applies. The presence of medium states lying close 
enough for quasi-resonance with the representative state requires a different approach. 
For these states a simple perturbation theory is no longer applicable and allowance 
must be made for the overlapping of the bands of the two states. The remaining 
states being treated as characterizing the medium, the simple Lorentz field factor will 
be added to a more complicated factor obtained from explicit consideration of inter- 
action between the overlapping states. It is useful to state the approximations involved 
in obtaining the Lorentz field factor. They are: 

(i) That there is no short-range order about the molecule absorbing the radiation. 
(ii) That the orientation of the transition dipoles can be replaced by an average 

(iii) That the dielectric constant d of the solvent is approximately equal to the 

These approximations are necessary if the interaction sum is to be evaluated by 
integration and the result identified with the medium refractive index. 

Such approximations should hold best for the non-polar pure liquid, for which 
each molecule is in a typical position and any short-range order effect will be included 
in the medium refractive index n'. The approximations will be least correct for solu- 
tion and liquid mixtures for which one or all components are dipolar, any short-range 
order of orientation about the absorbing molecules will not be that of the medium 
and will not be compensated for by use of the medium refractive index. It is just 
these systems for which the deduced expressions are in worst agreement with experi- 
ment. If the short-range order and orientation is known the interaction energy given 
by the shell of ordered molecules may be added to the integral result, which is valid 
for a lower limit of intermolecular separation of 40 a and less (in the optical region). 
An extra contribution will thus be added to the Lorentz field factor in correcting the 
transition dipole whose magnitude will be determined by the short-range order. 
Inclusion of this contribution would allow for any effects due to molecular anisotropy. 

The  method detailed allows calculations to be made for such large molecules as 
globular proteins, in which absorption may be essentially confined to a particular 
region of the molecule. A direct calculation enables local structure to be accounted 
for, whilst the surrounding medium may be allowed for in the way we have shown. It 
is also possible to make sample calculations for various local arrangements for com- 
parison with experiment. It must be remembered that the Lorentz correction is then 
an additive factor. Such calculations could also be made for solid solutions in glasses 

component along the electric field vector. 

square of its refractive index. 
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where the local order could be obtained from neutron or electron diffraction in prin- 
ciple. The  most probable local arrangement in liquids should vary with temperature, 
and the experimental investigation of this point should lead to a better understanding 
of the spectral solvent effect. 

I n  the case of crystals where the local order is known, good results for the oscillator 
strength have been obtained when interactions with only one intense medium state 
have been considered, due regard being given to the crystal structure (Thirunama- 
chandran 1968). The  system investigated was that of a tetracene solution in anthra- 
cene, the strong anthracene transition which contributes most to the results lies 
13 000 cm-l above the tetracene state. Though this gap will be reduced in the crystal 
it seems that such intense states do not need to be very close to have a large effect. It 
must be remembered that such intense solvent states will also be shifted, and the 
energy gap is not necessarily that of the free molecules. Thus it seems that solvents 
of strongly anisotropic molecules or possessing low-lying intense transitions are better 
treated by assuming some short-range order, and estimating the molecular sums of 
equation (27) (see I) directly. The  result is to be added to the integrated value of the 
matrix element, the sum over medium states being evaluated in terms of (nm2 - 1) 
multiplied by a constant dependent upon the local arrangement. For low-lying solvent 
transitions the sum over medium states may be evaluated directly. When estimating 
interaction between such solvent states and the solute it should be noted that both 
transition energies and dipoles of the solvent must be fully corrected for solvent- 
solvent interaction, if possible the values used should be obtained from the pure 
solvent spectra. 

The  success demonstrated in obtaining the classical electrostatic expressions, by a 
simple quantum-mechanical approach, points to the applicability of quantum 
mechanics as a route to the determination of bulk properties. Thus a basis has been 
provided for a more sophisticated quantum-mechanical approach to the theory of 
condensed systems. 
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